The given function f(x)=cosx−sin2x, is a
continuous function in interval [−2π,2π]
and differentiable in interval (−2π,2π).
Now, according to Lagrange's mean value theorem, there exist c∈(−2π,2π), such that f′(c)=2π−(−2π)f(2π)−f(−2π) ⇒−sinc−2cos(2c)=0 ⇒sinc+2−4sin2c=0 ⇒4sin2c−sinc−2=0
So, sinc=81±1+32 ⇒sinc=81±33 ⇒c=sin−1(81±33)