z2−z3z1−z3=21−i3=2(1+i3)(1−i3)(1+i3) =2(1+i3)1−i23=2(1+i3)4=(1+i3)2 ⇒z1−z3z2−z3=21+i3=cos3π+isin3π ⇒∣∣z1−z3z2−z3∣∣=1 and arg(z1−z3z2−z3)=3π
Hence, the triangle is an equilateral.
Alternate Solution ∴z2−z3z1−z3=21−i3 ⇒z1−z3z2−z3=1−i32=21+i3=cos3π+isin3π ⇒arg(z1−z3z2−z3)=3π and also ∣∣z1−z3z2−z3∣∣=1
Therefore, triangle is equilateral.