Given, numbers are conjugate to each other, ∴sinx+icos2x=cosx−isin2x
Equating real and imaginary parts, we get sinx=cosx and cos2x=sin2x ∴tanx=1 ⇒x=4π,45π,49π ...(i)
and tan2x=1 ⇒2x=4π,45π,49π ...(ii) ⇒x=8π,85π,89π,...
There exists no value of x common in Eqs. (i) and (ii).