Let z=x+iy x+iy+x2+y2=1+7i
On comparing real and imaginary parts, x+x2+y2=1 and y=7 ⇒x2+y2=1−x⇒x2+y2=1+x2−2x y2=1−2x 49−1=−2x x=−24 ∣z∣2=x2+y2=576+49=625 ∣z∣=25 (∣z+zˉ∣)2+(∣z−zˉ∣)2=(12+12)((∣z∣)2+(∣zˉ∣)2)=2×2×625=4×625=2×25=50 ∣z+zˉ∣2+∣z−zˉ∣2=50