Q.
The common roots of the equations z3−(1+i)z2+(1+i)z−i=0 (where i=−1) and z2016+z2017−1=0 are
1539
206
Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, z3−(1+i)z2+(1+i)z−i=0 →z2(z−i)−z(z−i)+(z−i)=0 ⇒(z−i)(z2−z+1)=0 ⇒(z−i)(z+ω)(z+ω2)=0 ⇒z=i,−ω,−ω2
Now, putting these values in z2016+z2017−1 we have
(i) (i)2016+(i)2016i−1=i4λ+ii4λ−1=i=0 ∴z=i is not a common root.
(ii) (−ω)2016+(−ω)2017−1=ω3(672).ω−1 =−ω=0 ∴−ω is not a common root.
(iii) (−ω2)2016+(−ω2)2017−1 =ω4032−ω4034−1 =1−ω2=0,
so the given equations have no common roots