log2x23=log221x23=2123log2x=log2x3 ⇒2log2x23=2log2x3=x3
We consider the expansion of (x3+x31)11. tr+1=11Cr(x3)11−r(x31)r=11Crx33−3r−3r =11Crx33−6r
For the coefficient of x9, we get 33−6r=9 ⇒6r=24⇒r=4.
Thus, the coefficient of x9 is 11C4=4×3×211×10×93×8=330.