Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The coefficient of x50 in the expansion of (1+x)100 + 2x (1+x)99 + 3x2 (1+x)98 + ... + 101x100, is
Q. The coefficient of
x
50
in the expansion of
(
1
+
x
)
100
+
2
x
(
1
+
x
)
99
+
3
x
2
(
1
+
x
)
98
+
...
+
101
x
100
,
is
1792
181
AP EAMCET
AP EAMCET 2018
Report Error
A
100
C
50
0%
B
101
C
50
0%
C
102
C
50
100%
D
103
C
50
0%
Solution:
Let
S
=
(
1
+
x
)
100
+
2
x
(
1
+
x
)
99
+
3
x
2
(
1
+
x
)
98
+
…
+
101
x
100
1
+
x
x
S
=
x
(
1
+
x
)
99
+
2
x
2
(
1
+
x
)
98
+
…
+
100
x
100
+
101
1
+
x
x
101
⇒
1
+
x
S
=
(
1
+
x
)
100
+
x
(
1
+
x
)
99
+
x
2
(
1
+
x
)
98
+
…
+
x
100
−
101
1
+
x
x
101
⇒
S
=
(
1
+
x
)
102
−
x
102
−
102
x
101
So, coefficient of
x
50
in the expansion of
S
=
102
C
50