We have, (1+x2)5=5C0(x2)0+5C1(x2)1+5C2(x2)2 +5C3(x2)3+5C4(x2)4+5C5(x2)5 =1+5x2+10x4+10x6+5x8+x10 (1+x)4=4C0x0+4C1x1+4C2x2+4C3x3+4C4x4 =1+4x+6x2+4x3+x4 ∴ Coefficient of x5 in the product of (1+x2)5(1+x)4 =(5x2)⋅(4x3)+(10x4).(4x) =20x5+40x5 =60x5