Given, f(x)=e2x+3 f′(x)=2⋅e2x+3, f′(0)=2⋅e3 f′′(x)=4⋅e2x+3, f′′(0)=4⋅e3 f′′(x)=8⋅e2x+3, f′′(0)=8⋅e3
By Maclaurin’s series, f(e2x+3)=1+1!x⋅f′(0)+2!x2f′′(0)+3!x3f′′(0)+… =1+1!x⋅(2e3)+2!x2(4e3)+3!x3⋅(8e3)+…
Hence, the coefficient x3 in the expansion of e2x+3 =3!8e3=68e3=34e3