For the coefficient of x2, on expanding along R1, we get Δ=x2[8x2+8x−x6−2x7−x8]−(x3+1) [8x3+24−x4−x5−4x3−4x4]+(x5+2) [x6+x7+3x3+3x4−x3−x2−4x2−4x] =8x4+8x3−x8−2x9−x10−8x6 −24x3+x7+x8+4x6+4x7−8x3−24 +x4+x5+4x3+4x4+x11+x12 +3x8+3x9−x8−x7−4x7−4x6+2x6 +2x7+6x3+6x4−2x3−2x2−8x2−8x
Coefficient of x2=−2−8=−10