Q.
The coefficient of the term independent of x in the expansion of (1+x+2x3)(23x2−3x1)9 is
1707
182
NTA AbhyasNTA Abhyas 2020Binomial Theorem
Report Error
Solution:
Coefficient of the term independent of x is the coefficient of x0 in (23x2−3x1)9+x(23x2−3x1)9+2x3(23x2−3x1)9
Now, in (23x2−3x1)9,Tr+1=9Cr(23x2)9−r(−3x1)r=9Cr(23)9−r(−31)rx18−3r (i) Coefficient of x0⇒18−3r=0⇒r=6
Coefficient of x0 is 9C6(23)3(−31)6 (ii) Coefficient of x−1⇒18−3r=−1⇒r=319 (not possible) (iii) Coefficient of x−3⇒18−3r=−3⇒r=7
Coefficient of x−3 is 9C7(23)2(−31)7
Hence, the required coefficient is 1×9C6(23)3(−31)6+1×0+2×9C7(23)2(−31)7 =3×29×8×7×(8+1)(2731)+Y×29×82(41)(−243271) =187−272=5417