Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The circles x2+y2-10x+16=0 and x2+y2=a2 intersect at two distinct points, if
Q. The circles
x
2
+
y
2
−
10
x
+
16
=
0
and
x
2
+
y
2
=
a
2
intersect at two distinct points, if
1839
213
WBJEE
WBJEE 2009
Report Error
A
a
<
2
B
2
<
a
<
8
C
a
>
8
D
a
=
2
Solution:
Here, centres and radii of given circles are
C
1
(
5
,
0
)
,
r
1
=
25
+
0
−
16
=
3
and
C
2
(
0
,
0
)
,
r
2
=
a
Now,
C
1
C
2
=
(
5
−
0
)
2
+
0
2
=
5
Since, two circles intersect at two distinct points
∴
∣
r
1
−
r
2
∣
<
C
1
C
2
<
r
1
+
r
2
⇒
∣
a
−
3
∣
<
5
<
a
+
3
⇒
∣
a
−
3
∣
<
5
and
5
<
a
+
3
⇒
−
5
<
a
−
3
<
5
and
a
>
2
⇒
−
2
<
a
<
8
and
a
>
2
⇒
2
<
a
<
8