Common chord of given circle 2x+3y−1=0 family of circle passing through point of intersection of given circle (x2+y2+2x+3y−5)+λ(x2+y2−4)=0 (λ+1)x2+(λ+1)y2+2x+3y−(4λ+5)=0 x2+y2+λ+12x+λ+13y−λ+1(4λ+5)=0
centre (−λ+11,2(λ+1)−3)
This centre lies on 2(−λ+11)+3(2(λ+1)−3)−1=0 −4−9−2λ−2=0 ⇒2λ=−15⇒λ=−15/2 (−215+1)x2+(−215+1)y2+2x+3y−(−4×215+5)=0 ⇒−213x2−213y2+2x+3y+25=0 ⇒13(x2+y2)−4x−6y−50=0