Centroid at 12x2−20xy+7y2=0 (pair at straight lines) and 2x−3y+4=0 is (α,β).
So, 12x2−14xy−6xy+7y2=0 2x(6x−7y)−y(6x−7y)=0 2x−y=0,6x−7y=0
and 2x−3y+4=0
So, centroid is 3x1+x2+x3,3y1+y2+y3 ⇒30+1+7,30+2+6 ⇒(3,838) ∴α=β=38
Now, α+2β=38+316=324=8