∵cos(315π+x)=(−1)315.cosx=−cosx∴4cos3x−4cos2x−cos(315πx+x)=1⇒4cos3x−4cos2x+cosx−1=0⇒(4cos2x+1)(cosx−1)=0∴cox=1,4cos2x+1=0⇒cosx=cos0∘∴x=2nπ,n∈I∴x=2π,4π,6π,8π.....,100π(∵0<x<315)∴ Required arithmetic mean =502π+4π+6π+8π+...+100π=502π(1+2+3+4+...+50)=2π.50250.51=51π