Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The area of the smaller region enclosed by the curves y2=8 x+4 and x2+y2+4 √3 x-4=0 is equal to
Q. The area of the smaller region enclosed by the curves
y
2
=
8
x
+
4
and
x
2
+
y
2
+
4
3
x
−
4
=
0
is equal to
540
0
JEE Main
JEE Main 2022
Application of Integrals
Report Error
A
3
1
(
2
−
12
3
+
8
π
)
B
3
1
(
2
−
12
3
+
6
π
)
C
3
1
(
4
−
12
3
+
8
π
)
D
3
1
(
4
−
12
3
+
6
π
)
Solution:
x
2
+
y
2
+
4
3
x
−
4
=
0
y
2
=
8
x
+
4
Point of intersections are
(
0
,
2
)
&
(
0
,
−
2
)
Both are symmetric about
x
-axis Area
=
2
0
∫
2
(
16
−
y
2
−
2
3
)
−
(
8
y
2
−
4
)
d
y
On solving Area
=
3
1
[
8
π
+
4
−
12
3
]