Equation of parabola is y2=x and line y=mx For intersection point of both curves put x=y2, we get y=my2 ⇒y(my−1)=0 ⇒y=0 or y=m1
Then, x=0 or x=m21 ∴ Intersection points are (0,0) and P(m21,m1) ∴ Required area =∫01/m∣∣(my−y2)∣∣dy=∣∣[2my2−3y3]01/m∣∣ =∣∣2m31−3m31∣∣=∣∣6m31∣∣=481( given ) ⇒6m31=±481 ⇒m3=±8
Now, if m3=8 ⇒m3=(2)3⇒m=2
If m3=−8 ⇒m3=(−2)3⇒m=−2