We have, max{∣x−1∣,∣y−2∣}=4
If {∣x−1∣≥∣y−2∣}
then ∣x−1∣=4,
i.e., if (x+y−3)(x−y+1)≥0,
then x=−3 or 5
If ∣y−2∣≥∣x−1∣,
then ∣y−2∣=4
i.e., (x+y−3)(x−y+1)≤0,
then y=−2 or 6 .
So, the locus of P bounds a square, the equation of whose sides are x=−3,x=5,y=−2,y=6
Thus, the area is (8)2=64Sq. unit.