Area =0∫π/4​(cosx1+sinx​​−cosx1−sinx​​)dx =0∫π/4​(1+tan2(x/2)1−tan2(x/2)​1+1+tan2(x/2)2tan(x/2)​​​−1+tan2(x/2)1−tan2(x/2)​1−1+tan2(x/2)2tan(x/2)​​​)dx =0∫π/4​1−tan2(x/2)​2tan(x/2)​dx
Let tan2x​=t⇒21​sec22x​dx=dt
by substitution Integration becomes 0∫2​−1​(1+t2)1−t2​4t​dt