Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The area of the region above the x-axis bounded by the curve y = tan x, 0 le x le (π/2) and the tangent to the curve at x = (π/4) is :
Q. The area of the region above the x-axis bounded by the curve
y
=
tan
x
,
0
≤
x
≤
2
π
and the tangent to the curve at
x
=
4
π
is :
3294
233
Application of Integrals
Report Error
A
2
1
(
lo
g
2
−
2
1
)
39%
B
2
1
(
lo
g
2
+
2
1
)
22%
C
2
1
(
1
−
lo
g
2
)
11%
D
2
1
(
1
+
lo
g
2
)
28%
Solution:
The given curve is
y
=
tan
x
...(1)
when
x
=
4
π
,
y
=
1
Equation of tangent at P is
y
−
1
=
(
sec
2
4
π
)
(
x
−
4
π
)
or
y
=
2
x
+
1
−
2
π
...(2)
Area of shaded region
= area of OPMO - ar (
Δ
PLM)
=
0
∫
4
π
tan
x
d
x
−
2
1
(
OM
−
O
L
)
PM
=
[
lo
g
sec
x
]
0
4
π
−
2
1
{
4
π
−
4
π
−
2
}
×
1
=
2
1
[
lo
g
2
−
2
1
]
sq unit