Let h be the hypotenuse of the right-angled triangle, and
let x be its altitude. Then,
Base of the triangle =h2−x2
Let A be the area of the triangle.
then, A=21xh2−x2 ⇒dxdA=21{1⋅h2−x2+x21(h2−x2)−21dxd(h2−x2)} ⇒dxdA=21{h2−x2−h2−x2x2} =21{h2−x2h2−2x2}
For maximum or minimum, we have dxdA=0⇒21{h2−x2h2−2x}=0 ⇒h2=2x2 ⇒x=2h
Now, ⇒dx2d2A=21{(−4x)h2−x21+(h2−2x2)(−21)×(h2−x2)−3/2dxd(h2−x2)} ⇒dx2d2A=21{h2−x2−4x+(h2−x2)3/2x(h2−2x)} ⇒(dx2d2A)x=2h=−2<0. [neglectingx=2−h∵dx2d2A∣x=2−h>0]
Thus, A is maximum when x=2h. ∴ Base =h2−(2h2)=2h
Hence, A is maximum when the triangle is isosceles.