Q.
The area (in sq. units) bounded between y=3sinx and y=−4sin3x from x=0 to x=π is
1469
208
NTA AbhyasNTA Abhyas 2020Application of Integrals
Report Error
Solution:
As 3sinx≥0 and −4sin3x≤0∀x∈[0,π],
the required area is A=∫0π(3sinx−(−4sin3x))dx A=∫0π(3sinx+(3sinx−sin3x))dx =∫0π(6sinx−sin(3x))dx =[−6cosx+3cos(3x)]0π =(6−31)−(−6+31) =12−32=334 sq. units