Given, y=5−x2⇒y2+x2=5
and y=∣x−1∣ ∴ Required area =−1∫25−x2dx−−1∫1(1−x)dx−1∫2(x−1)dx =[2x5−x2+25sin−15x]−12−[x−2x2]−11−[2x2−x]12 =[1+25sin−152+1+25sin−151] −[1−21−(−1−21)]−[2−2−(21−1)] =2+25sin−1(521−51+511−54)−25 =25sin−1(1)−21=45π−21=(45π−2) sq units