we have, y=x2−1…(i) x+y=3…(ii)
Solving (i)and(ii), we get 3−x=x2−1⇒x2+x−4=0 ⇒x1+x2=−1 and x1x2=−4 ⇒x2−x1=17…(iii)
Required area =x1∫x2[(3−x)−(x2−1)]dx=x1∫x2(4−x−x2)dx
[using Equation (iii)] =[4x−2x2−3x3]x1x2 =4(x2−x1)−21(x22−x12)−31(x23−x13) =4(17)−21(−1)(17)−3517=61717 sq. units