Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The arbitrary constant on which the value of the determinant |1 α α2 cos (p-d) a cos p a cos (p-d) a sin (p-d) a sin p a sin (p-d) a| does not depend, is
Q. The arbitrary constant on which the value of the determinant
∣
∣
1
cos
(
p
−
d
)
a
sin
(
p
−
d
)
a
α
cos
p
a
sin
p
a
α
2
cos
(
p
−
d
)
a
sin
(
p
−
d
)
a
∣
∣
does not depend, is
2087
221
Manipal
Manipal 2008
Report Error
A
α
B
p
C
d
D
a
Solution:
Let
Δ
=
∣
∣
1
cos
(
p
−
d
)
a
sin
(
p
−
d
)
a
α
cos
p
a
sin
p
a
α
2
cos
(
p
−
d
)
a
sin
(
p
−
d
)
a
∣
∣
Applying
C
3
→
C
3
−
C
1
, we get
⇒
Δ
=
∣
∣
1
cos
(
p
−
d
)
a
sin
(
p
−
d
)
a
α
cos
p
a
sin
p
a
α
2
−
1
0
0
∣
∣
=
(
α
2
−
1
)
{
−
cos
p
a
sin
(
p
−
d
)
a
+
sin
p
a
cos
(
p
−
d
)
a
}
=
(
α
2
−
1
)
sin
{
−
p
(
p
−
d
)
a
+
p
a
}
⇒
Δ
=
(
α
2
−
1
)
sin
d
a
which is independent of
p
.