Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The approximate value of log e(4.01) is ldots A ldots, if log e 4=1.3863. Here, A refers to
Q. The approximate value of
lo
g
e
(
4.01
)
is
…
A
…
, if
lo
g
e
4
=
1.3863
. Here,
A
refers to
178
190
Application of Derivatives
Report Error
A
1.3688
B
0.3888
C
1.3888
D
None of these
Solution:
Let
y
=
f
(
x
)
=
lo
g
e
x
,
x
=
4
and
x
+
Δ
x
=
4.01
Then,
Δ
x
=
0.01
Now, for
x
=
4
we have,
y
=
f
(
4
)
=
lo
g
e
4
=
1.3863
let
d
x
=
Δ
x
=
0.01
Now,
y
=
lo
g
e
x
⇒
d
x
d
y
=
x
1
⇒
(
d
x
d
y
)
x
=
4
=
4
1
∴
Δ
y
=
d
x
d
y
Δ
x
⇒
Δ
y
=
4
1
×
0.01
⇒
Δ
y
=
0.0025
(
∵
d
y
≈
Δ
y
)
∴
lo
g
e
(
4.01
)
=
y
+
Δ
y
=
1.3863
+
0.0025
=
1.3888