Given, f(x)=x3+5x2−7x+9
On differentiating both sides w. r. t. x, we get f′(x)=3x2+10x−7
Let x=1 and Δx=0.1, so that f(x+Δx)=f(1+0.1)=f(1.1)
We know that, f(x+Δx)=f(x)+Δxf′(x) =x3+5x2−7x+9+Δx×(3x2+10x−7)
Put x=1 and Δx=0.1, we get f(1+0.1) =13+5(1)2−7(1)+9+0.1×(3×12+10×1−7) ⇒f(1.1)=1+5−7+9+0.1(3+10−7) =8+0.1(6)=8+0.6=8.6