Let y=cos(x),x=30∘ and x+Δx=31∘
Let us find (y)x=6π=cos(6π)=23
Then, Δx=1∘=0.0174 radian.
Consider the given function, y=f(x)=cos(x)
Differentiating w.r.t. x dxdy=−sin(x) ⇒(dxdy)x=6π=−sin6π ⇒(dxdy)x=6π=−21
Let Δy be the change in y due to the change Δx in x. ∴Δy=dxdy×Δx =(−21)×0.0174 =(−0.5)×0.0174≈−0.0087 ∴f(36∘)=y+Δy =23−0.0087 =21.732−0.0087 =0.8660−0.0087 =0.8573