Let f(x,y)=(x2+3y4)1/6
Taking x=4,Δx=−0.08 and y=2,Δy=0.1
Differentiating (1) w.r.t. x, treating y as constant, ∴ΔxΔf=61(x2+3y4)−5/6(2x) =68(16+48)−5/6=34×2−5=241
and differentiating (1) w.r.t. y treating x as constant, ∴ΔyΔf=61(x2+3y4)−5/6(12y3) =612(8)(64)−5/6=16(2)−5=21 ∴df=ΔxΔf⋅dx+ΔyΔfdy =241×−0.08+21×0.1 =−30.01+20.1=0.466 ∴{(3.92)2+3(2.1)4}1/6=f(4,2)+df =2+0.466=2.466