Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The angle made by the tangent of the curve x=a(t+ sin t cos t) ; y=a(1+ operatornamesint)2 with the x-axis at any point on it is
Q. The angle made by the tangent of the curve
x
=
a
(
t
+
sin
t
cos
t
)
;
y
=
a
(
1
+
sint
)
2
with the
x
-axis at any point on it is
934
138
Application of Derivatives
Report Error
A
4
1
(
π
+
2
t
)
B
c
o
s
t
1
−
s
i
n
t
C
4
1
(
2
t
−
π
)
D
c
o
s
2
t
1
+
s
i
n
t
Solution:
d
t
d
x
=
a
+
2
a
2
cos
2
t
=
a
[
1
+
cos
2
t
)
=
2
a
cos
2
t
d
t
d
y
=
2
a
(
1
+
sin
t
)
⋅
cos
t
d
x
d
y
=
2
a
c
o
s
2
t
2
a
(
1
+
s
i
n
t
)
⋅
c
o
s
t
=
c
o
s
t
(
1
+
s
i
n
t
)
tan
θ
=
c
o
s
2
(
t
/2
)
−
s
i
n
2
(
t
/2
)
(
c
o
s
(
t
/2
)
+
s
i
n
(
t
/2
)
)
2
=
1
−
t
a
n
2
t
1
+
t
a
n
2
t
=
tan
(
4
π
+
2
t
)
⇒
θ
=
4
π
+
2
t