Let the equation of tangent y=mx of the circle (x−1)2+(y+1)2=25 ∴ Distance from centre of the circle to the tangent = radius of the circle ⇒1+m2−1+m=5 ⇒12+m2−2m=25(1+m2) ⇒24m2+2m+24=0 ⇒12m2+m+12=0 ⇒m1m2=−1
Alternate Solution:
It is clear from the figure that circle touches the coordinate axes, therefore tangent is perpendicular.