Equation of a tangent to a parabola y2=4x is y=mx+m1
Since, it passes through point (1,4). So, 4=m+m1
or 4m=m2+1 ⇒m2−4m+1 ∴m=24±16−4=24±12 m=2±3 ∴m1=2+3 and m2=2−3
Hence, angle between two slopes is tanθ=∣∣1+m1m2m1−m2∣∣ =∣∣1+123∣∣ ⇒tanθ=3 ⇒tanθ=tan3π ⇒θ=3π