Given,y2=4x[∴a=1]
General equation of parabola =y=mx+ma
[where, m is the slope ]
at (1,4);4=m+ma ⇒4=m+m1⇒m2−4m+1=0
Let m1 and m2 are the roots. ∴m1+m2=4 and m1m2=1
Now, tanθ=∣1+m1m2∣∣m1−m2∣=1+m1m2(m1+m2)2−4m1m2 =1+1(4)2−4(1)=216−4=212=223 ⇒tanθ=3⇒tanθ=tan3π⇒θ=3π