Equation of the given curve in parametric form, x=t2+1 and y=t2−t−6
Y-coordinate of the point, where the given curve meets X-axis is 0.
When y = 0, then t2−t−6=0 ⇒t2−3t+2t−6=0 ⇒t(t−3)+2(t−3)=0 ⇒(t−3)(t+2)=0 ⇒ t = 3 or - 2
when t = 3, then x = 10
when t = -2, then x = 5
Hence, the points where the curve meets the X-axis are (10, 0) and (5, 0).
Now, dxdy=dtdxdtdy=2t2t−1
Slope of the tangent at point (10, 0) m1=dxdy]x=10=dxdy]t=3=65
Slope of the tangent at point (5, 0), m2=dxdy]x=5=dxdy]t=−2=−4−5=45
If θ be the angle beween two tangents, then tanθ=∣∣1+m1m2m2−m1∣∣=∣∣1+65.4545−65∣∣ =∣∣2424+251215−10∣∣=∣∣2449125∣∣=∣∣4910∣∣ ⇒tanθ=±4910 ∴θ=tan−1(±4910)=±tan−1(4910)