Combined equation of pair of tangents from (1,2) to the ellipse 3x2+2y2=5 is (3x2+2y2−5)(3+8−5)=(3x+2y⋅2−5)2 (SS1=T2)
i.e., 6(3x2+2y2−5)=(3x+4y−5)2
i.e., 18x2+12y2−30=9x2+16y2+25+24xy−30x−40y
i.e., 9x2−4y2−24xy+30x+40y−55=0 ⇒9x2−24xy−4y2+30x+40y−55=0
If θ is the angle between the pair of tangents, then tanθ=a+b2h2−ab
Here a=9,b=−4;2h=−24
i.e., h=−12 ∴tanθ=9−42144+36=52180 =52(6)5=512 ∴θ=tan−1512