Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The angle between the pair of tangents drawn from the point (1, 2) to the ellipse $3x^2 + 2y^2 = 5 $ is

Conic Sections

Solution:

Combined equation of pair of tangents from $\left(1,2\right)$ to the ellipse $3x^{2}+2y^{2}=5$ is
$\left(3x^{2}+2y^{2}-5\right)\left(3+8-5\right) = \left(3x+2y\cdot2 -5\right)^{2}$
$\quad\left(SS_{1} =T^{2}\right)$
i.e., $6\left(3x^{2}+2y^{2}-5\right)= \left(3x+4y-5\right)^{2} $
i.e., $18x^{2}+12y^{2}-30 = 9x^{2}+16y^{2}+25+24xy-30x-40y $
i.e., $9x^{2}-4y^{2} -24xy+30x+40y-55=0 $
$\Rightarrow 9x^{2}-24xy -4y^{2}+30x+40y-55 = 0 $
If $\theta$ is the angle between the pair of tangents, then
$ tan\,\theta =\frac{ 2\sqrt{h^{2}-ab}}{a+b} $
Here $a=9, b=-4 ; 2h= -24 $
i.e., $h=-12 $
$ \therefore tan\, \theta =\frac{ 2\sqrt{144+36}}{9-4} = \frac{2\sqrt{180}}{5} $
$= \frac{2\left(6\right)\sqrt{5}}{5} = \frac{12}{\sqrt{5}} $
$ \therefore \theta = tan^{-1} \frac{12}{\sqrt{5}}$