Q.
The angle between the pair of lines (x2+y2)sin2α=(xcosθ−ysinθ)2 is :
3182
212
J & K CETJ & K CET 2007Straight Lines
Report Error
Solution:
Given pair of lines of (x2+y2)sin2α=(xcosθ−ysinθ)2 ⇒x2sin2α+y2sin2α=x2cos2θ +y2sin2θ−2xysinθcosθ ⇒x2(sin2α−cos2θ)+y2(sin2α−sin2θ) +2xysinθcosθ=0 ⇒x2(sin2α−cos2θ)+y2(sin2α−sin2θ) +2(sinθcosθ)xy=0
On comparing with ax2+by2+2hxy=0,
We get, a=sin2α−cos2θ,b=sin2α−sin2θ
and h=sinθcosθ
Let θ be the angle between the pair of lines. ∴ tanθ=∣∣a+b2h2−ab∣∣ =∣∣sin2α−cos2θ+sin2α−sin2θ)2sin2θcos2θ−(sin2α−cos2θ)×(sin2α−sin2θ)∣∣ =∣∣−(−1−2sin2α)2sin2θcos2θ−(sin2α)2+sin2αsin2θ+sin2αcos2θ−sin2θcos2θ∣∣ =∣∣−cos2α2sin2α(sin2θ+cos2θ)−(sin2α)2∣∣ =∣∣−cos2α2sin2α(1−sin2α)∣∣ ⇒tanθ=∣∣cos2αsin2α∣∣=tan2α ⇒θ=2α