Given, 1+m+n=0....(i) 2lm+2nl−mn=0.....(ii) m=−1−n[from Eq.(i)]
On substituting the value of m in Eq. (ii), we get 2l(−1−n)+2nl−(−1−n)n=0 →−2i2−2in+2nl+in+n2=0 →n2+ln−2l2=0 →n2+2ln−ln−2l2=0 →n(n+2l)−l(n+2l)=0 →(n+2l)(n−l)→n=1,n=−2l
When n=1,m=−21
When, n=−21,m=1
Therefore, direction ratios of two lines are 1,1,−2 and 1,−2,1
Now, cosθ=a12+b12+c12a22+b22+c22a1a2+b1b2+c1c2 =12+12+(−2)212+(−2)2+121−2−2=66−3 =6−3−2−1 ∴θ=cos−1(−21)−π−cos−1(21)−π−3π−32π