The point of intersection of given curves is (0,1).
On differentiating given curves, we get dxdy=axloga,dxdy=bxlogb ⇒m1=axloga,m2=bxlogb
At (0,1),m1=loga,m2=logb ∴tanθ=∣∣1+m1m2m1−m2∣∣=∣∣1+logalogbloga−logb∣∣ ⇒θ=tan−1∣∣1+logalogbloga−logb∣∣