Thank you for reporting, we will resolve it shortly
Q.
The angle between the curves $y=a^x$ and $y=b^x$ is equal to
Application of Derivatives
Solution:
The point of intersection of given curves is $(0,1)$.
On differentiating given curves, we get
$\frac{d y}{d x} =a^x \log a, \frac{d y}{d x}=b^x \log b $
$\Rightarrow m_1 =a^x \log a, m_2=b^x \log b $
At $ (0,1), m_1 =\log a, m_2=\log b $
$\therefore \tan \theta =\left|\frac{m_1-m_2}{1+m_1 m_2}\right|=\left|\frac{\log a-\log b}{1+\log a \log b}\right| $
$\Rightarrow \theta =\tan ^{-1}\left|\frac{\log a-\log b}{1+\log a \log b}\right|$