Given, curves are y2=8(x+4)...(i)
and y2=24(4−x)...(ii)
By Eqs.(i) and (ii), we get 8(x+4)=24(4−x) x+4=12−3x 4x=8 ⇒x=2 ∴y2=8(6) ⇒y=±43
For Eq. (i), 2ydxdy=8 ⇒2ym1=8 m1=2y8 ⇒m1=y4=434=31
For Eq. (ii), 2ydxdy=−24 ⇒ym2=−12 m2=43−12=−3
Here, m1m2=31×−3=−1
So, angle between the curves tanθ=(1+m1m2m1−m2) ⇒tanθ=1+(−1)31−(−3) ⇒tanθ=∞ ⇒tanθ=tan2π ⇒θ=2π