Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The angle between the curves y2=8(x+4) and y2=24(4-x) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The angle between the curves $y^{2}=8(x+4)$ and $y^{2}=24(4-x)$ is
AP EAMCET
AP EAMCET 2019
A
$\tan ^{-1}\left(\frac{1}{6}\right)$
B
$\tan ^{-1}(3)$
C
$\frac{\pi}{2}$
D
$\frac{\pi}{4}$
Solution:
Given, curves are
$y^{2}=8(x+4)\,\,\,...(i)$
and $y^{2}=24(4-x)\,\,\,...(ii)$
By Eqs.(i) and (ii), we get
$ 8(x+4) =24(4-x) $
$x+4 =12-3 x $
$4 x =8$
$\Rightarrow x=2 $
$\therefore y^{2} =8(6) $
$\Rightarrow y=\pm 4 \sqrt{3} $
For Eq. (i), $2 y \frac{d y}{d x}=8 $
$\Rightarrow 2 y m_{1}=8$
$m_{1}=\frac{8}{2 y} $
$\Rightarrow m_{1}=\frac{4}{y}=\frac{4}{4 \sqrt{3}}=\frac{1}{\sqrt{3}}$
For Eq. (ii), $2 y \frac{d y}{d x}=-24 $
$\Rightarrow y \,m_{2}=-12$
$m_{2}=\frac{-12}{4 \sqrt{3}}=-\sqrt{3}$
Here, $m_{1} \,m_{2}=\frac{1}{\sqrt{3}} \times-\sqrt{3}=-1$
So, angle between the curves $\tan \theta=\left(\frac{m_{1}-m_{2}}{1+m_{1} \,m_{2}}\right)$
$\Rightarrow \tan \theta=\frac{\frac{1}{\sqrt{3}}-(-\sqrt{3})}{1+(-1)} $
$\Rightarrow \tan \theta=\infty$
$\Rightarrow \tan \theta=\tan \frac{\pi}{2} $
$\Rightarrow \theta=\frac{\pi}{2}$