Q.
Tangents are drawn from any point on the hyperbola 4x2−9y2=36 to the circle x2+y2−9=0. If the locus of the midpoint of the chord of contact is (9x2−4y2)=λ(9x2+y2)2, then λ is equal to
9x2−4y2=1,x2+y2=9
Let P(3secθ,2tanθ)
From P, tangents PA and PB are drawn to circle x2+y2=9 ∴ Equation of chord of contact AB w.r.t. P is T=0 3xsecθ+2ytanθ=9....(i)
Let Mid point of AB is M(h,k) ∴ Equation of chord w.r.t. M T=S1 hx+ky−9=h2+k2−9.....(ii)
Compare (i) and (ii) T=S1 hx+ky−9=h2+k2−9 h3secθ=k2tanθ=h2+k29⇒secθ=3h(h2+k29) and tanθ=(2k)(h2+k29) As, sec2θ−tan2θ=1 ⇒(9h2−4k2)=(9h2+k2)2 ∴ compare with (9x2−4y2)=λ(9x2+y2)2
\Rightarrow \lambda=1 $