Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
tan-1(1/3)+ tan-1(1/7)+ tan-1(1/18)+.........+ tan-1((1/n2+n+1))+....to∞ is equal to
Q.
tan
−
1
3
1
+
tan
−
1
7
1
+
tan
−
1
18
1
+
.........
+
tan
−
1
(
n
2
+
n
+
1
1
)
+
....
t
o
∞
is equal to
2619
198
KCET
KCET 2000
Inverse Trigonometric Functions
Report Error
A
2
π
19%
B
4
π
53%
C
3
2
π
13%
D
0
15%
Solution:
T
n
=
t
a
n
−
1
n
2
+
n
+
1
1
=
t
a
n
−
1
1
+
n
(
n
+
1
)
1
=
t
a
n
−
1
[
1
+
(
n
+
1
)
n
(
n
+
1
)
−
n
]
=
t
a
n
−
1
(
n
+
1
)
−
t
a
n
−
1
(
n
)
Now
T
1
=
t
a
n
−
1
2
−
t
a
n
−
1
1
T
2
=
t
a
n
−
1
3
−
t
a
n
−
1
2
T
3
=
t
a
n
−
1
4
−
t
a
n
−
1
3
………………………
………………………
T
n
=
t
a
n
−
1
(
n
+
1
)
−
t
a
n
−
1
n
∴
T
1
+
T
2
+
..............
+
T
n
=
t
a
n
−
1
(
n
+
1
)
−
t
a
n
−
1
1
=
t
a
n
−
1
1
+
(
n
+
1
)
1
n
+
1
−
1
=
t
a
n
−
1
n
+
2
n
Let
n
→
∞
∴
T
1
+
T
2
+
..........∞
=
n
→
∞
lim
[
t
a
n
−
1
1
+
n
2
1
]
=
t
a
n
−
1
1
=
4
π
Hence reqd. sum
=
4
π