Q.
Suppose y=y(x) be the solution curve to the differential equation dxdy−y=2−e−x such that x→∞limy(x) is finite. If a and b are respectively the x-and y - intercepts of the tangent to the curve at x=0, then the value of a−4b is equal to ______
dxdy−y=2−e−x
I.F. =e−∫dx=e−x herefore solution of D.E y⋅e−x=∫(2e−x−e−2x)dx ⇒y=−2+2e−x+C⋅ex ∵x→∞limy is finite ∴x→∞lim(−2+2ex+C⋅ex)→ finite
This is possible only when C=0 ∴y=y(x)=−2+2e−x dxdy=−21e−x dxdy∣∣x=0=−21=m,y(0)=−2+21=2−3 ∴ equation of tangent y+23=−21(x−0) ⇒x+2y=−3 a=−3,b=2−3 a−4b=−3+6=3