Q.
Suppose x1,x2,x3 are real numbers such that x1x2x3=0.
Let
Δ=∣∣x1+a1b1a2b1a3b1a1b2x2+a2b2a3b2a1b3a2b3x3+a3b3∣∣
Then x1x2x3Δ−1 equals:
Using the sum property, write Δ=x1Δ1+b1Δ2
where Δ1=∣∣100a1b2x2+a2b2a3b2a1b3a2b3x3+a3b3<br/>∣∣ =(x2+a2b2)(x3+a3b3)−a3b2a2b3 =x2x3+x2a3b3+x3a2b2 Δ2=∣∣a1a2a3a1b2x2+a2b2a3b2a1b3a2b3x3+a3b3<br/>∣∣
Using C2→C2−b2C1,C3→C3−b3C1, we get Δ2=∣∣a1a2a30x2000x3<br/>∣∣=a1x2x3
Thus, Δ=x1[x2x3+x2a3b3+x3a2b2]+a1b1x2x3 ⇒x1x2x3Δ−1=x1a1b1+x2a2b2+x3a3b3