Q.
Suppose θ and ϕ(=0) are such that sec(θ+ϕ),secθ and sec(θ−ϕ) are in A.P. If cosθ=kcos(2ϕ) for some k, then k is equal to
2510
172
AIEEEAIEEE 2012Sequences and Series
Report Error
Solution:
Since, sec(θ−ϕ),secθ and ec(θ+ϕ) are in A.P., ∴2secθ=sec(θ−ϕ)+sec(θ+ϕ) ⇒cosθ1=cos(θ−ϕ)cos(θ+ϕ)cos(θ+ϕ)+cos(θ+ϕ) ⇒2(cos2θ−sin2ϕ)=cosθ[2cosθcosϕ] ⇒cos2θ=1+cosϕ=2cos22ϕ ∴cosθ=±2cos2ϕ
But given cosθ=kcos2ϕ ∴k=±2