Q.
Suppose that the points (h,k),(1,2) and (−3,4) lie on the line L1 If a line L2 passing through the points (h,k) and (4,3) is perpendicular on L1, then k+h equal to
∵(h,k),(1,2) and (−3,4) are collinear ∴∣∣h1−3k24111∣∣=0 ⇒−2h−4k+10=0 ⇒h+2k=5.....(i)
Now, mL1=−3−14−2=−21 ⇒mL2=2[∵L1⊥L2]
By the given points (h,k) and (4,3), mL2=h−4k−3 ⇒h−4k−3=2 ⇒k−3=2h−8 2h−k=5.....(ii)
From (i) and (ii) k+h=1+3=4