Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Suppose that system of equations x = cy + bz, y = az + cx, z = bx +ay has non-trivial solution. Then a2+b2+c2+2abc=
Q. Suppose that system of equations
x
=
cy
+
b
z
,
y
=
a
z
+
c
x
,
z
=
b
x
+
a
y
has non-trivial solution. Then
a
2
+
b
2
+
c
2
+
2
ab
c
=
1968
216
Determinants
Report Error
A
2
100%
B
−
1
0%
C
0
0%
D
1
0%
Solution:
∣
∣
−
1
c
b
c
−
1
a
b
a
−
1
∣
∣
=
0
Expanding the determinant, we get
−
1
(
1
−
a
2
)
−
c
(
−
c
−
ab
)
+
b
(
c
a
+
b
)
=
0
<
b
r
/
>⇒
a
2
+
b
2
+
c
2
+
2
ab
c
=
1
.