LMV Theorem for f in [1,2] ∀c∈(1,2)2−1f(2)−f(1) =f′(c)≤2 f(2)−f(1)≤2 ⇒f(2)≤4...(1)
Again, using LMV Theorem in [2,4] ∀d∈(2,4)4−2f(4)−f(2) =f′(d)≤2 ∴f(4)−f(2)≤4 ⇒8−f(2)≤4 ⇒4≤f(2) ⇒f(2)≥4
From (1) and (2), we get f(2)=4LMV Theorem for f in [1,2] ∀c∈(1,2)2−1f(2)−f(1) =f′(c)≤2 f(2)−f(1)≤2 ⇒f(2)≤4...(1)
Again, using LMV Theorem in [2,4] ∀d∈(2,4)4−2f(4)−f(2) =f′(d)≤2 ∴f(4)−f(2)≤4 ⇒8−f(2)≤4 ⇒4≤f(2) ⇒f(2)≥4...(2)
From (1) and (2), we get f(2)=4